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Using the theory of homogenization we examine the correction to Darcy’s law due 
to weak convective inertia of the pore fluid. General formulae are derived for all 
constitutive coefficients that can be calculated by numerical solution of certain 
canonical cell problems. For isotropic and homogeneous media the correction term 
is found to be cubic in the seepage velocity, hence remains small even for Reynolds 
numbers which are not very small. This implies that inertia, if it is weak, is of greater 
importance locally than globally. Existing empirical knowledge is qualitatively 
consistent with our conclusion since the linear law of Darcy is often accurate for 
moderate flow rates. 

1. Introduction 
In flows through a rigid porous medium the celebrated law of Darcy, which is a 

linear relation between the averaged seepage velocity and the pressure gradient on 
the macroscale, is well established experimentally for sufficiently small pressure 
gradients or flow rates. As has been reviewed by many authors (e.g. Rose 1945; 
Scheidegger 1974; Dullien 1979; Kovacs 1981; Hannoura & Barends 1981), the law 
is generally regarded as valid even for not so small Reynolds numbers, defined by 
R = u l / v  where u is seepage velocity, 1 typical pore size, and v kinematic viscosity. 
Much effort has been focused on the upper limit of Darcy’s law and the effect of large 
R on the permeability. Empirical formulae aiming at a universal expression over a 
wide range of R less than 1000 have been proposed for isotropic and homogeneous 
media in the following form due to Forcheimer (1901) : 

-K= = ( u )  + b(u)m ax 
which modifies Darcy’s law through the last nonlinear term. The coefficient K ,  which 
is proportional to the hydraulic conductivity of the medium, and b are material 
constants depending on the pore size, shape and porosity, and the power m is close 
to 2. The threshold value of R when the nonlinear term becomes appreciable ranges 
from 0.1 to 75 (Scheidegger 1974, p. 154), but the smaller range of 1 < R < 10 is 
generally accepted in the literature. The wide spread is due in part to the uncertainty 
of 1 and difficulty in characterizing the pore shape in a natural material. There have 
also been theoretical attempts to justify (1.1) (see e.g. Bear 1972; Scheidegger 1974; 
Happel & Brenner 1983; Cvetkovic 1986 for reviews and further references). In these 
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older theories there have been two approaches. I n  the first, one either models the 
pores by an array of small tubes, or the solid matrix by an array of fibres, so that the 
interstitial flow is treated one-dimensionally. In  the second approach, one begins by 
performing Reynolds averaging of Navier-Stokes equations, as in the theory of 
turbulence. But then a closure hypothesis is added (e.g. Cvetkovic 1986, p. 77) based 
sometimes only on dimensional reasoning (De Wiest 1969). In this way some 
coefficients are not determined by the theory itself. 

To be sure, even for negligible inertia a strict theory which predicts, without 
closure assumptions, not only the form of Darcy’s law but the permeability is not a 
simple matter if the complexity of the pore is realistically modelled. The difficulties 
can be seen in the available approximate analytical theories for simple geometries 
such as a periodic array of spheres or of circular cylinders, as surveyed by Happel & 
Brenner (1983). Brenner (1964) has given a general treatment which provides a 
formal basis for deducing from microscale mechanics the permeability tensor (called 
by the author the grand resistance matrix) in Darcy’s law for an aggregate of rigid 
particles. More recently an alternative and powerful formalism called the theory of 
homogenization (Bensoussan, Lions & Papanicolaou 1978) has been developed which 
is very convenient for composite media with microscale structures consisting of 
periodic cells. f Phenomenological equations are derived on the basis of microscopic 
mechanics by the perturbation method of two scales. I n  the present problem the two 
lengthscales are just the typical pore size 1 and the macroscale L which characterizes 
the averaged flow, with l /L = E < 1. For this model of microstructures, which may 
be quite adequate for some materials though still highly idealized for some others, 
there is no need to  add closure assumptions and the permeability tensor can be 
rigorously constructed from the numerical solution of a boundary-value problem 
defined for a periodic cell on the Z-scale. Sample papers are Ene & Sanchez-Palencia 
(1975) and Keller (1980) for rigid porous media, Auriault & Sanchez-Palencia (1977) 
for the quasi-static motion, and Levy (1979), Auriault (1980), and Burridge & Keller 
(1981) for the dynamics of saturated and deformable porous media. The theory of 
homogenization has also been applied, for the deduction of phenomenological 
theories from microscale foundations, to many other branches of applied physics 
involving composite media and microscale heterogeneities (Bensoussan et al. 1978 ; 
Sanchez-Palencia 1980; Bakhvalov & Panasenko 1989). It has also been extended by 
us for rigid and deformable porous media with several disparate scales of 
inhomogeneities (Mei & Auriault 1989). The model of periodic microstructures is also 
a t  the base of the theory of dispersion in porous media by Brenner (1980) and 
Brenner & Adler (1982). 

A fully predictive theory for R = O( 1)  corresponding to (1 .1)  is difficult in general. 
As shown by Ene & Sanchez-Palencia (1975) and by Keller (1980), the cell problem 
involves the full NavierStokes equations. Accurate numerical solution for the two- 
dimensional problem of a corrugated tube with a circular cross section has been given 
by Payatakes, Tien & Turian (1973). Since the complete solution to the linearized cell 
problem for packed uniform spheres was derived only recently (Zick & Homsy 1982), 
it is likely that a fully nonlinear theory for three-dimensional geometries is merely 
formal at present. I n  view of this we pursue a less ambitious goal and derive a higher- 
order theory for rigid porous media when the fluid inertia is small but finite, i.e. 
R 4 1.  By employing the theory of homogenization results are first developed for a 
general anisotropic medium. All the constitutive coefficients in the macroscopic law 

t Periodicity here does not mean that grains or pores must be of uniform size and shape. 
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will be shown to be defined by certain linear microscale boundary-value problems in 
a typical cell. These problems involve only Stokes equations and can be solved in the 
manner of Zick & Homsy. For the important special case of an isotropic and 
homogeneous medium we shall show that the Darcy law becomes 

i.e. n = 3. The new coefficient b arising from weak inertia will also be proved to be 
non-negative. The one-dimensional model of parallel corrugated tubes also leads to 
(1.2), although the case is anisotropic. In  general terms quadratic in ui must be 
included. That the correction term in (1.2) is cubic in (ui)  for small ( U J  is consistent 
with the empirical knowledge that the linear law of Darcy is valid even for R = O( l),  
and does not contradict (1.1) where the nonlinear term is significant only for large 
(UO. 

2. Formulation 

constant density. Everywhere in the pores Navier-Stokes equations apply : 
We consider a rigid porous medium with an incompressible Newtonian fluid of 

On the wetted surface of the solid matrix r 
ui = 0 on r. (2.3) 

For slow flows we anticipate that the two terms on the right-hand side of (2.2) are 
equally important. Because of the two contrasting scales the hydrodynamic pressure 
consists of two parts : the global pressure which has the lengthscale L and the local 
pressure modification which has the lengthscale 1, with 1/L = 8 4 1. Let us allow for 
generality that the two have comparable pressure gradients, then the global pressure 
must be much greater than the local pressure by the factor O(l/e).  Hence we may 
regard the former as the driving and the latter the responding pressure. Equating the 
order of magnitudes of the global pressure gradient to the local viscous stress, we get 

O(u)  - 12plpL. (2.4) 

If we use 1 to normalize formally all space coordinates then 

On the other hand the ratio of inertia to  viscous stress (Reynolds number) is of the 
order 
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Since E can be extremely small, say less than 0.01, for small Reynolds numbers it is 
of greater interest to  consider 

To avoid cumbersome notation in a two-parameter expansion, we shall specify 

and rewrite ( 2 . 2 )  formally as 
6 = 62 (2.8) 

Despite its appearance above, the dominant pressure gradient is in fact of O(6'). 
The boundary condition on the wetted surface r of the pores has already been 

given by (2.3). 
Let us assume in addition that the porous matrix has a periodic microstructure. 

Each periodic cell SZ is a rectangular box of dimension O(Z). We then expect ui and 
p to be spatially periodic from cell to cell. 

We now introduce the multiple-scale coordinates 

xi, xi = s2xi (2.10) 

and the perturbation expansions 

1 
= p )  +6 p (1) + S2p(') + 63p(3) + . . . , J 

ui = up +sup + 62Uy + 63u'3' + . . . , 

where u( j ) ,p ( j )  are functions of xi and X i .  
From (2.1) we get, a t  orders from O(eo)  to O(e4): 

au;4) au !2 )  -+-- = 0. axi axi 
Similarly we get from (2.9) 

(2.11) 

(2.12a, b )  

(2.12c, d) 

(2.12 e )  

(2.13a, b )  

On the pore surfaces r the velocity vanishes, hence 

(2.13 c) 

(2.13d) 
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In a typical Q-cell we impose the condition that the flow is periodic, i.e. 

uio) u/l) . . . p(O)p(l) . . . are Q-periodic. (2.15) 

We shall seek the macroscale equations for the averaged physical quantities up to 
O(S2). 

It may be pointed out that  the assumption (2.7) is crucial here. Had it been 
assumed that the Reynolds number is of order unity, then in (2.9) both &-factors 
would be replaced by E ;  ( 2 . 1 3 ~ )  would be augmented by the convective inertia and 
become fully nonlinear (Ene & Sanchez-Palencia 1975). 

3. The first-order problem 
From (2.13a, b)  we conclude that 

p(0) = p‘”(X,), p(1) = p y x , ) .  (3.1) 

Because of the linearity of (2.12 a) and (2.13 c) we can represent uio) and pcz )  formally 
by 

where j P ) ( X i )  is independent of xi. It then follows that Kij (x i ,X i )  and A,(xi, X i )  must 
satisfy 

where 

i3A 
-L+pV2Ki,  axi = -aij, 

Ki, = O  on r, 
K , ,  A, are Q-periodic. 

(3.3) 

(3.4) 

This defines a Stokes flow boundary-value problem in an Q-cell. The existence and 
uniqueness of ul0) and Vpcz) of this cell problem has been established by Ene & 
Sanchez-Palencia (1975) and the solution can be obtained numerically for any 
prescribed microstructure. In  particular, for a porous matrix composed of uniform 
spheres, the numerical problem has been solved by Zick & Homsy (1982, where 
earlier references may be found). 

Defining the average over an Q-cell by 

where Qf is the fluid volume inside the Q-cell, we get 

(3.7) 

(3.9) 

(3.10) where n is the porosity n = lQ,I/lQl. 
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Equation (3.8) is just Darcy's law with the permeability tensor (K,,) determinable 
theoretically from the cell problem. The Q-average of ( 2 . 1 2 ~ )  gives 

(3.11) 

after invoking Gauss' theorem and the boundary conditions on r and the boundaries 
of SZ. This implies, in turn, 

a ap(o) 
- ( K i j ) q  axi = 0, (3.12) 

Equations (3.8) and (3.10) or (3.11) are of course well known. 

shown that (K i i )  is symmetric, 

and that ( K , )  is positive definite. 

L-scale, we have 

where K is a constant. It follows from (3.12) that  

From the cell boundary-value problem Ene & Sanchez-Palencia have further 

(Ki j )  = (Kji)  (3.13) 

For the special case where the medium is isotropic and homogeneous on the 

(4) =KSij, (A,) = 0, (3.14) 

(3.15) 

With proper boundary conditions for pc0) on the macroscale, p(O) can then be found. 

4. The second-order problem 

and the boundary conditions. The forcing function in (2.13d) is 
We now consider the cell problem for uil) and p(3 )  defined by (2.12b) and (2.13d) 

We therefore assume that 

It follows by substituting (4.2) into (2.12b) and (2.13d) that the new coefficient 

(4.4) 

with the boundary conditions that 

Lijk = 0 on r, (4.5) 
L,,, Bjk are Q-periodic. (4.6) 

The cell problem defined by (4.3)-(4.6) is of the same type as that for Ki, and A, and 
can be solved by the same numerical procedure, and the resulting Q-averages gives 
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The Q-average of (2 .124 gives 

after using Gauss' theorem and the secondary conditions on ui2) ; this in turn implies 
a governing equation for p( l )  

(4.9) 

When the medium is isotropic and homogeneous with respect to X,, (LUk)  must be 

(4.10) 

proportional to the permutation tensor E , ~ ~  which has the properties that 

€123 = €231 = €312 = 1, €132 = €321 = €213 = - 1 

and all other components vanish. It follows that 

On the other hand <B5k) = Bs5k? (4.12) 

where B is a constant. Further, p ( l ) ( X i )  = n-'(p(')) satisfies (3.15). Without loss of 
generality, one may then absorb p( l )  in p(O), or take 

p(1) = 0, (4.13) 

which implies that  (ull)) may also be taken to  be zero. 
A more general identity can be derived. Scalar-multiplying (3.4) by L,,,, we get 

(4.14) 
aL a ( L , , ~  A ~ )  + A  .A+ - 

a 
-Ljqk = -- 

axi 3 ax, axg 

Clearly, by integrating the preceding equation over the Q-cell and invoking (3.3), 
(3.4) and the boundary conditions, we get 

(4.15) 

Similarly we find by scalar-multiplying (4.4) by Ki5 and integrating over the Q-cell, 

It follows from the difference of (4.14) and (4.16) that  

which can be written alternatively as 

(4.16) 

(4.17) 

(4.18) 
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after interchangingj and k. Adding both sides of the above two equations and noting 
that 

(4.19) 
we obtain the following identity: 

( L k q j )  + ( L j q k )  = O' (4.20) 

In  the special case where the global pressure gradient is in one direction only, say 

(4.21) 

then (Llll) = 0, implying <uil)) = 0. (4.22) 

However, (LZll) and (L311) are in general non-zero, hence (u;')) and (up)) are also 
non-zero, and the quadratic correction to Darcy's law is anisotropic. 

5. The third-order problem 

(3.2) is used, ( 2 . 1 4 ~ )  gives 
For ui2) and p(*) the governing equations in a a-cell are ( 2 . 1 2 ~ )  and (2.13e). When 

Similarly by using (3.2) and (4.2), (2.13e) becomes 

For brevity we introduce the following notation for the forcing term: 
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and then express the solution as 

where @4) = p(4)(X,). Then from (5.1) and (5.2) the governing equations for the new 
coefficient tensors are 

( 5 . 5 ~ 4  b )  

(5 .5c,  d )  

For each of the four sets of unknowns the no-slip and periodicity conditions must be 
added. Thus we have four similar cell problems which can again be solved 
numerically. The S2-average of (5.4) gives ( u ( ~ ) )  and ( P ( ~ ) )  in terms of the macroscale 
gradients of p(O), p(l)  and g2) and the averaged coefficients in (5.4). To find pC2) we 
take the S2-average of (2.13e) to get 

which in turn gives the governing equation for @2) : 

For a general anisotropic and inhomogeneous medium, the field equations for the 
macroscale quantities (uJ = (ujo)) + 6 ( @ )  + a2(wj2))  and ( p )  = p(O) + Sp(l) + 

are now known. With proper boundary conditions according to the physical 
situations, the boundary-value problems are now complete up to the order a2. 

We now restrict our attention to media that are isotropic and homogeneous with 
respect to X, .  First 

because all the forcing terms in (5 .5 ,9 ,  h )  vanish by assumption of homogeneity in Xi. 
There is no contribution to the Q-average of (5.4) byM;ik and 15';; because @') = 0 (see 
(4.13)). The S2-averages of the third-rank isotropic tensors (M;;Ik) and (C;;,) are 
proportional to the permutation tensors; and the associated terms in (5.4) cancel in 
pairs, as in (4.11). The most general isotropic tensor of rank four is 

< M i , k g )  = h 6 ~ , S k , + ~ u ( 6 i k 6 , g + 6 ~ g S ~ k ) + V ( 6 i k  s j g - s i g 6 j k ) ,  (5.9) 
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where A ,  ,u and v are scalars. Using these facts we obtain, simply, 

(5.10) 

(5.11) 

where /3 is a constant coefficient defined by 

/3 = A+2p = (wiii) (no summation over i), (5.12) 

and c“ is defined by Cik = Psi,. (5.13) 

Combining (5.10) and (5.6) we obtain the governing equation for T ( ~ ) :  

(5.14) 

We recall that the permeability coefficient K is found from the cell problem 
(3.3)-(3.6), and p from (5.5a, b )  and the boundary conditions of no slip and 
periodicity. 

6. Summary for an isotropic homogeneous medium 
By combining (3.8), (4.7) and (5.10) we obtain 

(Ui) = (,up) + S(u{”) + S2(u{2’) 

Similarly by combining (3.9) with ( A j )  = 0 we have 

( p )  = p ( o )  + ~ 2 p  + o(~3). 

Equation (6.1) can be rewritten as 

To the same order of accuracy one can alternatively write 

Either (6.3) or (6.4) is the extension to Darcy’s law for low Reynolds numbers, and 
should be combined with 

2- - 0  
axi 

to complete the macroscale equations. 
Thus for a low-Reynolds-number flow in an isotropic homogeneous medium, the 

leading-order correction due to convective inertia is a term cubic in the mean 
velocity. The coefficients K and p are completely determined by their respective 
cell problems. More important, (6.4) implies that  the linear law of Darcy is very 
accurate even for Reynolds numbers not much smaller than unity. I n  fact, 
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available experimental data indicate that the domain of accuracy extends further 
to 0 < R < 1. For example, based on a comprehensive analysis of four different 
studies for homodisperse spheres, Kovacs (1981) plotted the effective coefficient K e f f ,  
defined by 

versus the Reynolds number, for 0.06 < R < 1000. Among the data he collected, the 
majority is for high Reynolds numbers, though some (due to Zunker 1930) are for low 
Reynolds numbers. (For R < 0.1, only one data point is available for sphere diameter 
= 0.93 mm (n = 0.374), at R = 0.065. I n  the range 0.1 < R < 0.5, for each of two 
diameters equal to 0.93 mm and 0.79 mm (n = 0.369) there are only four data points, 
a t  R = 0.13, 0.19, 0.33, 0.43.) It is, however, unmistakably clear that for these small 
Reynolds numbers, Kef f  is virtually independent of R. Thus it is likely that the 
coefficient p in (6.4) is numerically small for homodisperse spheres. There are also 
many other experiments done with natural sand and rockfills, but the data scatter 
is often rather large (see e.g. McCorquodale, Hannoura & Nasser 1978) so that one 
can only surmise the constancy of the statistical average of Kerf for small R. It is not 
possible to use these data to draw any conclusion on the inertia correction. 

7. Proof that /3 d 0 
On intuitivc grounds one expects that, to maintain the same seepage velocity, a 

higher pressure gradient is needed if fluid inertia becomes increasingly important. 
Hence p should be non-positive. This is established theoretically by proving that 
( W i i i )  < 0, as follows. 

Changing the index j to p in (3.4), taking the scalar product of the resulting 
equation with Mijkg, and integrating over the fluid in the 0-cell, we obtain after 
partial integration, 

Now multiplying (5 .56)  scalarly by K i p  and integrating over 0, also we find 

It follows that 

after using ( 5 . 3 ~ ) .  We need to prove that 

After changing the indices j to 9,  g to I ,  and k to p in (4.4), we 
resulting equation by L , ,  and integrate over the 0-cell, to find 

(7.3) 

(7-4) 

next multiply the 



658 

The right-hand side can be manipulated to give 
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after partial integration and the use of (3.3). 
If we take j = k = g = p in (7.5) and (7.6) without summing over p ,  the result is 

which is non-negative. Clearly the first term on the right of (7.4) is non-positive, i.e. 

For the second term on the right of (7.4) we get 

after using (4.3), Gauss’ theorem and the boundary conditions. Finally, (7.8) and 
(7.9) together imply that 

P = < M p p p p )  G 0 (7.10) 

as expected; therefore b >, 0 in (1.2). This does not exclude the possibility that /I is 
close to zero for some geometries, so that convective inertia that must be locally 
important still does not alter Darcy’s law on the macroscale. 

8. A one-dimensional model 
The most elementary model of a porous medium that can be treated analytically 

is one with parallel and straight tubes. This modcl permits flow in one direction only 
and the fluid mechanics problem reduces to that for a single tube. Scheidegger (1974) 
also considered parallel tubes consisting of serially connected tube segments of 
different cross-sections. However, he only accountcd for the Poiseille flow in the 
straight portion of each segment but not the junctions, hence not the convective 
inertia. In the literature there are also three-dimensional models consisting of a 
network of tubular segments; the details of the junctions are ignored and only the 
flow resistance along the straight portions is accounted for (see e.g. Bear 1972) for a 
survey of earlier literature and Adler & Brenner 1984a, b who treated non- 
Newtonian fluids). This omission can be justified at  the leading order if the tube 
radius is much smaller than the typical distance between junctions. The problem 
then involves three vastly different lengthscales : a < 1 < L. A leading-order theory 
for such a porous medium with a l l  - 1/L - O(6) and Re = O(6) has been given by Mei 
& Auriault (1989) who point out that inertia is important only at  O(S3) (see comment 
after ( 2 . 1 4 ~ )  therein). 

Remaining in the context of two scales, we discuss here a quasi-one-dimensional 
medium with pores in the form of corrugated tubes parallel to the x-axis. The radius 
a(.) of a typical tube varies periodically and significantly in x a t  the wavelength of 
1,  which is of the order a, as sketched in figure 1.  For simplicity a is assumed to be 
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I I 
+'--I 

FIGURE 1. A corrugated tube. 

independent of the macroscale. The macroscale problem is one-dimensional, 
homogeneous but anisotropic, and the microscale problems are only two-dimensional 
in x and r ,  where r is the radial coordinate measured from the axis of a typical tube. 

We denote the longitudinal and radial components of velocity u by u and w 
respectively. It follows from (3.1) that 

(8.1) pco) = p ( 0 )  (X), p(1) = p(l)(X).  

The leading-order velocity field can be written 

(8.2a, b )  

where do) = (do), W ' O ) )  and K = (K,,Kr). (8.3) 

The Q-cell is the interior of a typical tube within one wavelength 1. The unknown 
coefficients K,, K,  and A are governed by 

V * K =  0, (8.4) 

- ( l , O )  =-VA+pV2K (8.5) 

K = 0 on r = a(.) ; K, A : Q-periodic, (8.6) 

and the boundary conditions 

where 

This axisymmetric Stokes flow problem can be solved numerically by finite elements 
as in Auriault, Borne & Champon (1985) who treated a two-dimensional problem of 
rectangular blocks in a plane. From the solution we then take the volume average 
over a unit cube of length 1 defined by 

(f) = '1 Qf 1 dxr2nf rd r  0 

with 1 also representing the interval (2, x + 1 )  where 

Qf =n: a2dx J, 
is the pore volume per period and 

n = -N a2(x)dx : 5, (8.10) 
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is the porosity, with N being the number of tubes in a square of area P. The’result 
of averaging (8.2a) is 

(8.11) 
a p )  

( U ( O ) )  = - ( K ) = .  

From (3.15) we get simply 

thus the macroscale pressure gradient is constant. 
On physical grounds we anticipate that 

(K, . )  = 0 so that (w(O)) = 0. 

This can be confirmed by first finding K,. from (8.8) 

rK, = 1 & (rK,) dr  

(8.12) 

(8.13) 

(8.14) 

and integrating over the cell volume 

= J]dx$S%drrs:dr’r/K.-J]dx~S%drrK, 

= [a J: drrK,]; - Il dxaZGK,(x, a ( x ) )  = 0, 
aa 

(8.15) 

where (8.6) has been invoked. This proves that (K,.) = 0, hence the macroscale flow 
is trivially anisotropic to  the leading order. 

The next-order solution can be written as 

and 

(8.16) 

(8.17) 

It is easy to see that p( l )  satisfies (8.12) also and may be taken to be zero, while L and 
B satisfy 

V . L  = 0, (8.18) 

- p ( K . V K )  = -VB+pV2L (8.19) 

and the boundary conditions 

L = 0, r = a(x )  ; L,  B :  Q-periodic. (8.20) 

Although it is possible to solve this inhomogeneous Stokes flow problem for the local 
flow, the Q-average of the velocity field is however zero. This is because (L,) = 0, 
which can be shown in the same way as for the case (K, . ) ,  and (L,) = 0 because of 
(4.22). 

At the third order we first use (8.11) to get 

(8.21) 
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Expressing the velocity and pressure in the form 

(8.22) 

with M =  (M, ,M, )  (8.23) 

we find that the averaged j#2) satisfies (8.15) and can be set to zero. The cell problem 
for M and C is defined by 

V - M  = 0, (8.24) 

-p(K.VL+L*VK) = -VC+pV2M (8.25) 

with the same boundary conditions (8.6) or (8.20). Its solution can be averaged to 
give 

(8.26) 

Combining the first three orders O(P) ,  (I(&’), O(S2) and writing 

K = (KaJ? P = ( M X >  (8.27) 

we get - aP a2 
K -  = ( u ) - - ~ ( u ) ~  

ax2 K 3  
(8.28) 

Thus the nonlinear extension of Darcy’s law is also in the form of (6.4), despite the 
anisotropy here. As in $7 it can also be shown that P < 0. 

Again the inertia correction to the linear law of Darcy is relatively insignificant for 
small flow rates. This result is not inconsistent with the numerical study of 
Payatakes et al. (1973) who calculated the friction factor for flows through a 
corrugated tube by solving the full NavierStokes equations by finite differences. 
The tube radius r(x)  varies periodically in x from rmax, where there is sharp corner (a 
discontinuity in r’(x)), to rmin. Within a wavelength h between two successive rmax, 
r ( x )  is a parabola. By plotting the friction coefficient 

(8.29) 

against the Reynolds number R=- PUD (8.30) 
P 

they find that log,,( fR) = P - , where Ar = rmax-rmin (8.31) 

for 0.1 < R < 10 and A r / h  = 0, 0.1, 0.3, 0.5. Departure from (8.31) is still small for 
10 < R < 100. These computed results are in reasonable agreement with the 
experiments by Batra (1969) for corrugated tubes that are only roughly periodic with 
some irregularities. Since 

(3 

(8.32) 

the implied coefficient K K D2/fR is also independent of R for R less than 10. Thus for 
this geometry, the linear Darcy’s law is again valid up to rather high Reynolds 
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numbers when local inertia is decidedly important. This implies that  the coefficient 
b in (6.4) should be zero or close to zero. To see whether the same is true for other 
corrugated tubes would be very interesting. 

9. Concluding remarks 
We have applied the theory of homogenization to deduce, without a closure 

hypothesis, the extension of Darcy’s law in a rigid porous medium when the fluid 
inertia is small but finite. By assuming that the medium has a periodic structure on 
the scale of the pores, general relations between pressure and the velocity on the 
macroscale are derived for anisotropic inhomogeneous media. All the coefficients in 
the phenomenological relations are defined by boundary-value problems of Stokes 
flow in a unit cell on the pore scale. These boundary-value problems can be solved 
numerically, although the task is by no means simple as is evident in the work by 
Zick 6 Homsy (1982) who have completed calculations of the coefficient K for a 
medium made up of packed spheres of equal radius. 

For a medium that is homogeneous and isotropic on the macroscale, the inertia 
effect gives rise to a correction term cubic in the averaged velocity, hence the 
modification to the linear Darcy’s law is very minor, as is consistent with all known 
experiments. This is also the case for the anisotropic one-dimensional model of 
parallel corrugated tubes. Although expected physically, we have also proven 
mathematically that the coefficient of the cubic term is of such a sign as to demand 
a higher pressure gradient to maintain the same seepage velocity. 

I n  view of the robustness of Darcy’s law for R < 0(1) ,  as evidenced by experiments 
for spheres and by the numerically exact solution for a corrugated tube, i t  is likely 
that the coefficient b in (1.1) is numerically small or zero for many geometries. 
Explicit numerical solutions of the requisite cell problems and further experiments 
are needed to further understand why inertia can be more important on the 
microscale than on the macroscale. It is also worth facing the challenge of solving the 
full three-dimensional Navier-Stokes equations for a unit cell in order to predict 
substantial modifications of Darcy’s law. 

C.C.M.’s work was supported in part by the US National Science Foundation 
through Grant MSM 8616693 (Solid and Geomechanics Program). He acknowledges 
the support by Massachusetts Institute of Technology and the Universiti: Joseph 
Fourier for making possible his sabbat>ical visit to  1’Institut de Mkcanique de 
Grenoble, and the hospitability of Professor J. P. Germain and his colleagues. J. L. A. 
thanks the Centre National de la Recherche Scientifique for supporting this 
collaboration. Comments by the Referees and Professor E. Hopfinger have done 
much to sharpen our own view of the subject. 

R E F E R E N C E S  

ADLER, P. M. & BRENNER, H.  1984a Transport processes in spatially periodic capillary networks 

ADLER, P. M. & BRENNER, H. 1984b Transport processes in spatially periodic capillary networks 

AURIAULT, J.-L. 1980 Dynamic behavior of a porous medium saturated by a Newtonian fluid. Intl 

AURIAULT, J.-L. & SANCHEZ-PALENCIA, E. 1977 Etude du comportment macroscopique d’un 

11, Taylor dispersion with mixing vertices. Physico-chem. Hydrodyn. 5,  269-285. 

111, Nonlinear flow problems. Physico-chem. Hydrodyn. 5, 287-297. 

J .  Engng Sci. 18, 775-785. 

milieu poreux satur6 dhformable. J .  M i c .  16. 575-603. 



Effect of weak i,nrrticc o)), j o i ~  throiiqh u po~o’us m.edium 663 

AURIAULT, J.-L., BORNE, L. & CHAMPON. R. 1985 Dynaniirs of porous saturated media, checking 

BAKHVALOV, N. & PANASENKO, G. 1989 Homoyetiization : A u e m g i n g  Processes in Periodic Media. 

BATRA, V. K .  1969 Laminar flow through wavy tuhes and wavy channels. Master’s thesis, 

BEAR, ,J. 1972 Dynamics of Fluids in Porous Media. Klsevier. 
BENSOUSSAN, A., LIONS, ,J. L. & PANPANICOLAOI.. G.  1978 Asymptotic Analysia for Periodic 

Structures. North-Holland. 
BRENNER, H. 1964 The Stokes resistance of an arbitrary particle. I1 - an extension. Chem. Engng 

Sci. 19, 59W29. 
BRENNER, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. 

Trans. R. SOC. Lond. A 297, 81-133. 
BRENNER, H. & ADLER, P. M. 1982 Dispersion resulting from flow through spatially periodic 

porous media. 11. Surface and intraparticle transport,. P h i l .  Trans. R .  Soc. Lond. A 307, 
149-200. 

BURRIDGE, R. & KELLER, J .  B. 1981 Poroelasticit,y equations derived from microstructures. 
J. Acoust. Soc. A m .  70, 1140-1 146. 

CVETKOVIC, V. D. 1986 A continuum approach to  high velocity flow in a porous medium. 
Transport in Porous Media 1, 63-97. 

DE WIEST, R. (ed.) 1969 Flow Through, Por01i.s N e d i n .  p. 13ff. Academic. 
DULLIEN, F. A. L. 1979 Porous Media. Fluid Trarisport ond Pore Structure. Academic. 
ENE, H. I .  & SANCHEZ-PALENCIA, E. 1975 Equat,ions ct ph6nomi.nes de surface pour l’kcoulement 

FORCHHEIMER, P. 1901 Wasserbewegung durclr Doden. %. Ver. Deutsch. Ing. 45, 1782-1788. 
FORCHHEIMER, P .  1930 Hydraulik, 3rd edn. Trubner. 
HAPPEL, J. & BRENNER, H.  1983 Low Reynolds ,VumOrr Ilydrodynamics. Martinus Nijhoff. 
HANNOURA, A. A. & BARENDS, F. 1981 Non-Dercy flow: a state of the ar t .  In  Flow and Transport 

in Porous Media (ed. A. Veruijt & F. B. J .  Hanrends). Balkema. 
KELLER, J. B. 1980 Darcy’s law for flow in porous media and the two-space method. I n  Nonlinear 

Partial Diflerential Equations in Engineering wtd  Applied ,Science (ed. R. L. Sternberg, A. tJ. 
Kalinowski t J. S. Papadakis), pp. 429-443. Ikkker .  

of the generalized law of Darcy. J. dcous f .  Soc. . - l n i .  77. 1641-1650. 

Kluwer Academic. 

University of Waterloo, Ontario, Canada. 

dans un modkle de milieux poreux. J. M ~ c .  14. 73-108. 

KOVACS, G. 1981 Seepage Hydraulics. Elsevier. 
LEVY, T. 1979 Propagation of waves in a fluid-saturated porous elastic solid. Intl J. Engng Sci. 

MCCORQUODALE, J. A,, HANNOURA, A. & NASSER, M.  S. 1978 Hydraulic conductivity of rockfill. 
J. Hydraulic Res. 2, 123-137. 

MEI, C. C. & AURIAULT, J.-L. 1989 Mechanics of hetcropeneous porous media with several spatial 
scales. Proc. R. Soc. Lond. A 426. 391-493. 

PAYATAKES, A. C., TIEN, C. & TURIAN. R. M. 1973 Part  TT. Numerical solution of steady state 
incompressible Newtonian flow through periodirally ronstric+ted t,ubes. AIChE J .  19, 67-76. 

ROSE, H.  E. 1945 On the resistance coefficient,-Re.Snolds number relationship for fluid flow 
through a bed of granular materials. Proc. In,.st. Mech,.  bhgrs 153, 154-168. 

SANCHEZ-PALENCIA, E. 1974 Comportement local et macroscopiyue d’un type de milieux 
physiques hkterogknes. Zntl J. Engng Sci. 12. 331-351. 

SANCHEZ-PALENCIA, E. 1980 Nonhomogeneous Media and Vibration Theory. Lecture Notes in 
Physics, vol. 127. Springer. 

SCHEIDEGGER, A. E .  1974 The Physics of Flow Throuyh Porous Media: 3rd edn. University of 
Toronto Press. 

ZICK, A. A. & HOMSY, G. M. 1982 Stokes flow through periodic array of spheres. J. Fluid Mech. 

ZUNKER, F. 1930 Behavior of soil in connection with water (in German). Handbook of Soil Science, 

17, 1005-1014. 

115, 13-26. 

vol. VI. Springer. 


